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Tissue energy metabolism can be characterized as the sequential oxidation of relatively 
reduced carbon sources with the transfer of reducing equivalents to NAD(P)+ or flavoproteins. 
These, in turn, use these electrons for energy production in mitochondria or for protection from 
reactive oxygen species, ROS. In either oxidative or fermentative metabolism, the endproducts 
of metabolism are acids, leading to low pH. This delicate balance of oxygen, redox ratios and 
pH can be upset in pathologies such as ischemia, renal failure, COPD, and cancer. Our 
understanding of the interrelationships between oxygen, redox and pH will be improved by the 
development of imaging methods to interrogate these parameters non-invasively. In this section, 
we will briefly describe current and novel approaches to the measurement of tissue oxygen, 
redox and pH. 
 
MEASUREMENT OF TISSUE OXYGEN 
Table 1 lists a number of oxygen measurement techniques that are in current development. The 
“gold standard” is pO2 histography (usually with an Eppendorf microelectrode). Although it is 
invasive, this approach yields scalar and quantitative values for pO2. If data are collected at 
multiple sites, a histogram of oxygen values within the organ of interest can be generated. 
 

TABLE 1. Summary of Methods to Stratify Patients for Hypoxia-Directed Therapies. 
Technique Injection? Measures Resolution Clinically 

Invasive 
pO2 histography No pO2 0.5 mm Approved 

PET imaging 
18F-Miso PET Yes hypoxia 2.0 mm Phase III 
18F-AZA PET Yes hypoxia 2.0 mm Phase II 
18F-EF5 PET Yes hypoxia 2.0 mm Phase II 
64Cu-ATSM Yes hypoxia 3.0 mm Phase III 

MR imaging 
19F-MRI Yes pO2 2.0 mm No 
MRI BOLD R2* No Deoxy-Hb 0.2 mm Phase II 
Hi MW DCE MR Yes Permeability 0.2 mm Phase II/III 
EPRI Particulate No pO2 1.0 mm Phase II 
EPRI Infusion Yes pO2 1.0 mm No 

Histology 
HIF-1 No Biological Hypoxia 1.0 µm No 
GLUT-1 No HIF trans-activation 1.0 µm Yes 
CA 9 No HIF trans-activation 1.0 µm Yes 
EF5 Yes Chronic + 1.0 µm Yes 
Pimonidazole  Yes Chronic + 1.0 µm Yes 

Serum Marker 
OPN in Serum 
 

No Chronic hypoxia? N/A Yes 



It is notable that there are a number of Positron Emission Tomography (PET) tracers in 
development that are based either on reduction and trapping of 2-nitroimidazoles (miso, 
azamiso, EF5) or through intracellular enzymatic reduction and trapping of 64Cu. Despite the 
fact that these produce images of poorer resolution compared to MRI, they are generally 
believed to be more quantitative and are being approved for human use. In contrast, MR 
techniques, despite their higher intrinsic resolution, are not yet validated to provide accurate, 
quantitative or relevant measures of tissue oxygenation. Both Electron Paramagnetic 
Resonance Imaging (EPRI) of particulates and 19F MRI of hexafluorobenzene require 
implantation of reporters. Although measurements can be carried out longitudinally thereafter 
with these approaches, these are somewhat more invasive than other measures. Dynamic 
Contrast-enhanced MRI (DCE-MRI) of high molecular weight contrast reagents is sensitive to 
vessel permeability and this can be a downstream sequela of biological hypoxia. Although this is 
potentially promising as a biomarker for hypoxia, it is early in development. EPR imaging of 
infused contrast reagents is also early in development, yet holds promise for quantitative 
measures of pO2 non-invasively. The following section will briefly discuss BOLD MRI in more 
detail because of its non-invasive nature and its wide applicability. 
 
 
BLOOD OXYGEN LEVEL-DEPENDENT (BOLD) MRI 
Deoxyhemoglobin (Hb●) in circulating red blood cells contains an unpaired electron. Thus it is 
paramagnetic, while oxygenated hemoglobin (HbO2) is not. The paramagnetic effect causes a 
decrease in the apparent T2 (T2*) of nearby water protons through changes in the bulk 
magnetic susceptibility. BOLD contrast is generated from difference images between activated 
and resting tissues collected with T2* sensitive sequences, such as gradient-recalled echoes 
(GRE) [1]. Activation is commonly induced with hyperoxia, typically administered through 
carbogen (95%:5% O2:CO2) breathing. Quantification of the BOLD effect in response to 
carbogen is difficult because signal changes are affected by not only the tissue pO2, but also the 
tissue pH, the hematocrit and blood flow [2]. Carbogen is used instead of 100% O2 because it is 
believed that the increased CO2 (hypercapnia) will block hyperoxic vasoconstriction. However, 
the effects of CO2 on blood flow are complex, probably involving direct effects of CO2 and 
indirect effects of the resulting lowered pH [3]. In Morris hepatomas, carbogen increased 
oxygenation and reduced interstitial pH, while no effects on blood flow were observed [4]. In 
GH3 prolactinomas, even 1% CO2:99%O2 caused a more significant drop in R2*, compared to 
100% O2 [5], indicating that even slight hypercapnia can have significant effects on vascular 
tone. This is important because the respiratory acidosis caused by 5% CO2 causes significant 
patient discomfort, whereas 1% CO2 is easily tolerable.  Carbogen has been shown to induce 
reductions in tumor pH, which are likely due a direct effect of CO2 hydration, rather than 
changes in perfusion [6, 7, 8]. Tissue acidification also decreases oxygen affinity through the 
Bohr effect, consequently increasing Hb● without changes in oxygen status. Patent vessels in 
tumors can have transiently low hematocrit leading to reductions in BOLD contrast, even under 
hypoxia [9]. Another shortcoming of the use of BOLD MRI to quantitatively measure blood 
oxygenation is that there can be a significant inflow of unsaturated spins during the long echo 
times (typically ≈ 60 ms), resulting in an underestimation of hypoxia. For this reason, changes in 
GRE contrast have been termed FLOOD (flow and oxygen dependent) contrast. With careful 
controls, the individual components can be deconvolved, showing that the major effect of 
carbogen on GRE contrast is a decrease in Hb● [2, 10, 11]. 
 
GRE-MRI has been used successfully to characterize tumor vascular dynamics by measuring 
relative responses to physiological challenges, such as hypercapnia, hyperoxia, and vasoactive 
drugs. In an important series of experiments, Neeman and colleagues have shown that dynamic 
changes in GRE images between normoxia, hypercapnia and carbogen can be used to 



discriminate immature from mature vasculature. Mature vessels (i.e. those with pericytes or 
smooth muscle cells) respond to hypercapnia while immature vessels are unresponsive. This 
distinction has been used to measure the selective destruction of immature vessels in response 
to VEGF withdrawal [12]. Parallel studies using intravital microscopy showed that hypercapnia 
induced vasoconstriction in mature vessels, and the resulting drop in hematocrit caused a 
paradoxical drop in BOLD contrast, consistent with reduced Hb● [9, 12].  
 
In addition to describing the microenvironment, these techniques can be applied to monitor the 
effects of improving therapy. Carbogen is being used to enhance chemotherapeutic efficacy, as 
in the case of 5-fluorouracil [13]. Carbogen causes delayed pharmacokinetics and a transient 
decrease in GRE signal intensity that is positively correlated with tumor size [7]. Although this 
was interpreted as an increase in oxygenation, this signal drop is likely caused by a transient 
reduction in hematocrit, since these treatments also resulted in a tumor size-correlated drop in 
tissue pH. In combination with radiotherapy, GRE-MRI images have been collected from 
patients in response to carbogen, showing that while normal tissues uniformly respond with 
decreased T2*, a significant fraction (11/28) of patient tumors are unresponsive [14, 15]. Work 
from a number of groups suggests that distinct components of the water resonance from each 
voxel respond differently to changes in oxygenation [16, 17]. Thus, subvoxelar, perhaps 
microscopic heterogeneity of changes in tumor oxygenation can be detected by high spectral 
and spatial resolution (HISS) multivoxel spectroscopy. 
 
PH IMAGING 
Historically, the extracellular pH (pHe) of tissues in vivo has been measured using 
microelectrodes or weak acid/weak base distributions [18, 19, 20]. These approaches have 
disadvantages in that they are either invasive or destructive. The measurement of pH using the 
chemical shift of endogenous inorganic phosphate by 31P MRS represented the first time that 
this parameter was measured in vivo [21, 22, 23, 24]. Such measurements have greatly 
stimulated this field of inquiry. 
 
Measurement of pH by 31P MRS. 
31P measurements of human and animal pH using inorganic phosphate report values that are 
neutral-to-alkaline [25, 26, 27]. As these values were significantly higher than those observed 
with microelectrodes, particularly in tumors, it was reasoned that this technique was measuring 
intracellular pH (pHi) while microelectrodes measured primarily pHe [28]. This was confirmed 
through the use of an extracellular pH indicator, 3-aminopropylphosphonate (3-APP) which 
reported an acidic pHe and a neutral-to-alkaline pHi in tumor xenografts and neutral-to-alkaline 
pHe in normal tissues [29]. Since then, 3-APP has been a common tracer used during 31P MRS 
of tissues, primarily tumors and muscle. 
 
Measurement of pH by 1H MRS. 
1H MRS offers significantly higher sensitivity compared to 31P MRS, allowing for data to be 
collected in smaller voxels in less time. 1H MRS approaches to measure pHe have relied on 
compounds such as imidazoles and aromatics that resonate far downfield of endogenous 
metabolites. The first such approaches to be used in vivo were based on imidazole-1-alkyl 
esters developed by Ballesteros and her colleagues [30, 31]. One of these, (+/-)2-imidazole-1-
yl-3-ethoxycarbonylpropionic acid (IEPA), has been used in breast tumor xenografts to produce 
multivoxel pHe maps with resolution approaching 1 x 1 x 2 mm3 [32]. These maps showed pHe 
values from 6.4-6.8, which were consistent with those measured with 31P MRS of 3-APP. By 
combining MRSI of IEPA and vascular MRI using albumin-GdDTPA, Bhujwalla et al. [33] have 
demonstrated the feasibility of obtaining co-registered maps of vascular volume, permeability 
and extracellular pH. Studies correlating pHe to metabolites in a transplanted rat glioma model 



showed negative correlations between N-acetyl aspartate and IEPA measured pHe or lactate, 
and surprisingly little correlation between lactate and pHe [34]. 
 An alternative approach to measuring pH with single voxel MRS of imidazoles uses the 
chemical shift of free histidine H2 resonances. However, in most tissues except muscle, 
histidine levels are too low to observe. Oral supplementation of human subjects with approx. 0.4 
g/kg increases histidine levels to 0.8 mM in brain, which can be observed in patients at 1.5 T in 
a reasonable timeframe. The (presumably intracellular) pH measured by this technique showed 
a brain pH of 6.96 [35]. 
 
Measurement of pH by 19F MRS. 
Compared to 31P and 1H, 19F is advantageous in having both high sensitivity and no interference 
from endogenous resonances. Of course, a disadvantage of 19F MR is a lack of other 
physiologic information, which must be interrogated with other nuclei. 20 years ago, Deutsch 
and her colleagues developed a series of fluorinated alanines for measurement of cell pH [36, 
37]. Although they did not find utility in vivo, they clearly demonstrated the power of this 
approach. Currently, two different approaches are being used in vivo. Mason and colleagues 
are using fluorinated vitamin B6 derivatives (6-fluoropyridoxol and 6-fluoropyridoxamine) which 
distribute across plasmalemma and undergo a chemical shift, allowing simultaneous 
measurement of pHi and pHe [38, 39]. An alternative compound, 3-[N-(4-fluor-2-
trifluoromethylphenyl)- sulphamoyl]-propionic acid (ZK-150471) has also been well-developed 
and yields pHe values consistent with those measured by 31P MRS, but with higher precision in 
less time and free from compartmentation artifacts [40]. Similarly ZK-150471 has been used to 
measure tumor pHe upon hyperthermia or hydralazine treatment, showing significant decreases 
with both treatments [41]. Although fluorinated B6 and ZK-150471 have high sensitivity and a 
large pH-dependent chemical shift dispersion, they have not yet been used in an imaging 
protocol. 
 
Measurement of pH by Contrast-Enhanced MRI.  
pH-sensitive gadolinium complexes and gadolinium-containing pH-sensitive polyion complexes 
offer the possibility of imaging pH with a spatial resolution comparable to standard MRI. Aime 
and co-workers [42] have exploited the fact that at the magnetic fields typically employed in 
clinical scanners, the relaxivity of Gd(III) chelates is largely determined by the reorientational 
time of the molecule. They synthesized a complex, (GdDO3ASQ)30-Orn114, consisting of thirty 
Gd(III) chelates bound to a poly-ornithine chain. Protonation and hydration of free amino groups 
at acidic pH pushes them apart and increases the mobility of the paramagnetic moieties. On the 
other hand, progressive deprotonation of these groups with increasing pH renders the complex 
more rigid, slowing down the reorientational time experienced by individual chelates to values 
closer to that of the molecule as a whole. Thus, the longitudinal water proton relaxivity of the 
complex increases with increasing pH. 
 
Sherry and co-workers have reported that the H-bonding network created by protonation of 
phosphonate side-arms of the GdDOTA-4AmP complex provides a catalytic pathway for 
exchange of the bound water protons with protons of bulk water, making the longitudinal water 
proton relaxivity of this molecule pH-sensitive [43]. The enhancement produced by such agents 
is dependent on both the local pH and concentration of the agent. Hence, one approach to 
determine pH using these compounds is to sequentially administer two contrast agents having 
identical tissue pharmacokinetics, with one being insensitive to tissue pH [44]. The distribution 
of the pH-insensitive agent can be used to predict the concentration of the pH-sensitive agent. 
Using GdDOTP as a pH-insensitive surrogate for GdDOTA-4AmP, it has been possible to 
compute pH images of kidneys and nearby tissues in mice [45]. 
 



Measurement of pH by Magnetization Transfer. 
An interesting new approach to the measurement of tissue pH is to measure a pH-dependent 
chemical exchange dependent magnetization (saturation) transfer, CEST. This approach has its 
foundations in structural biology, wherein phase-cycling is used to determine amide-hydrogen 
exchange (e.g., [46]). Van Zijl and colleagues have developed methods to measure these 
exchange rates in vivo, by avoiding saturation of water protons during solvent suppression. 
Consequently, this generates a significant improvement of signal intensities from exchangeable 
hydrogens, many of which reside in the amide part of the spectrum, between 5-10 ppm. The 
intensities of these resonances are affected by pH-dependent exchange relayed saturation [47]. 
This approach, however, is difficult to quantify since the concentration of exchanging amides is 
not known. Furthermore, it is limited to MRS acquisitions. Balaban and colleagues have begun 
to develop probes with high exchange rates in order to directly transfer saturation to bulk water. 
Combining pH-sensitive and pH-insensitive exchanging species that resonate at different 
frequencies allows for a concentration-independent ratiometric determination of pH [46, 48, 49]. 
In these cases, the exchanging moieties can either be on the same compound, or on different 
compounds with similar biodistribution. A limiting factor in these studies are the high 
concentrations required (ca. 60 mM), and the direct magnetization transfer to water, as the 
exchanging hydrogens resonate within the water envelope. Optimal CEST contrast results when 
the exchange rate of the mobile protons with water approaches the separation (in Hz) between 
the chemical shift values of the two exchanging species: larger relative chemical shifts permit 
the exploitation of agents with faster water exchange rates. Aime and co-workers have recently 
reported the development of lanthanide-based paramagnetic complexes containing both highly 
shifted pH-insensitive and pH-sensitive exchangeable protons, allowing for a ratiometric 
determination of pH [50]. Sherry and co-workers have reported the development of a Europium-
based CEST agent with a Eu-bound proton resonance which is 50 ppm downfield of the bulk 
water resonance [51]. Hence, there will be minimal direct transfer of magnetization to water, 
thereby further increasing the contrast. This compound has been further derivatized to provide a 
pH-dependent CEST effect [52]. 
 
 
MEASUREMENT OF REDOX BY MRI. 
Tissue redox status is known to be important in several disease states, particularly pathological 
conditions involving hypoxia, including tumors, strokes and myocardial infarcts [53, 54]. EPR 
evidence that hypoxic regions in xenograft tumors are highly reducing has been uncovered in 
studies by the groups of Kuppusamy, Zweier and Gallez [55, 56, 57]. Emerging evidence 
indicates that a reducing extracellular microenvironment aids tumor cell survival and 
proliferation [58, 59, 60, 61]. Several drugs have been designed to target tumor cells in such 
hypoxic-reducing microenvironments [62, 63, 64]. Efforts are ongoing to create redox-sensitive 
contrast agents for MRI that would enable the non-invasive assessment of tissue redox. Aime 
and co-workers have proposed exploiting the redox-sensitive Mn(II)/Mn(III) transition for this 
purpose [65]. The Eu(II)/Eu(III) transition holds even greater potential in this regard, as the 
reduced Eu(II) state is isoelectronic with Gd(III) and is an excellent T1 relaxing agent, while the 
oxidized Eu(III) state is poorly relaxing [66]. 
 
We have synthesized thiol complexes of gadolinium designed to spontaneously form reversible 
covalent linkages with circulating plasma albumin at the Cys34 residue. The objective is to keep 
the gadolinium bound to albumin, and therefore intravascular, in oxidizing microenvironments. 
Reduction of the disulfide bond in reducing microenvironments would free the gadolinium 
complex, rendering it small enough to extravasate. Strategies for exploiting such redox-sensitive 
binding of contrast agents to albumin to image tumor redox will be discussed. 
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